
Package: multicool (via r-universe)
September 11, 2024

Type Package

Title Permutations of Multisets in Cool-Lex Order

Version 1.0.1

Date 2024-02-05

Author James Curran, Aaron Williams, Jerome Kelleher, Dave Barber

Maintainer James Curran <j.curran@auckland.ac.nz>

Description A set of tools to permute multisets without loops or hash
tables and to generate integer partitions. The permutation
functions are based on C code from Aaron Williams. Cool-lex
order is similar to colexicographical order. The algorithm is
described in Williams, A. Loopless Generation of Multiset
Permutations by Prefix Shifts. SODA 2009, Symposium on Discrete
Algorithms, New York, United States. The permutation code is
distributed without restrictions. The code for stable and
efficient computation of multinomial coefficients comes from
Dave Barber. The code can be download from
<http://tamivox.org/dave/multinomial/index.html> and is
distributed without conditions. The package also generates the
integer partitions of a positive, non-zero integer n. The C++
code for this is based on Python code from Jerome Kelleher
which can be found here
<https://jeromekelleher.net/category/combinatorics.html>. The
C++ code and Python code are distributed without conditions.

URL https://github.com/jmcurran/multicool

BugReports https://github.com/jmcurran/multicool/issues

Encoding UTF-8

License GPL-2

Depends methods, Rcpp (>= 0.11.2)

LinkingTo Rcpp

RcppModules Multicool

RoxygenNote 7.2.3

1

http://tamivox.org/dave/multinomial/index.html
https://jeromekelleher.net/category/combinatorics.html
https://github.com/jmcurran/multicool
https://github.com/jmcurran/multicool/issues

2 allPerm

Repository https://jmcurran.r-universe.dev

RemoteUrl https://github.com/jmcurran/multicool

RemoteRef HEAD

RemoteSha e1a805e75050bceab0efc53e197ec350c54af8fa

Contents
allPerm . 2
Bell . 3
genComp . 4
initMC . 5
multinom . 6
nextPerm . 8
Stirling2 . 9

Index 11

allPerm Generate and return all permutations of a multiset

Description

This function will return all permutations of a multiset

Usage

allPerm(mcObj)

Arguments

mcObj an object of class mc - usually generated by initMC

Details

This function will return all permutations of a multiset. It makes no check to see if this is a sensible
thing to do. Users are advised to check how many permutations are possible using the multinom
function in this package.

Value

A matrix with each row being a different permutation of the multiset

Note

This function does not warn the user that the requested set of permutations may be very large. In
addition, all working is handled entirely in memory, and so this may cause it to crash if the request
is execeptionally large.

Bell 3

Author(s)

James M. Curran

See Also

initMC, multinom

Examples

a small numeric example with 6 permuations
x = c(1,1,2,2)
m = initMC(x)
allPerm(m)

a large character example - 60 possibilities
x = rep(letters[1:3], 3:1)
multinom(x) ## calculate the number of permutations
m = initMC(x)
allPerm(m)

Bell Compute the Bell numbers

Description

This function computes the Bell numbers, which is the summ of Stirling numbers of the second
kind, S(n, k), over k = 1, . . . , n, i.e.

Bn =

n∑
k=1

S(n, k), n ≥ 1

Usage

Bell(n)

B(n)

Arguments

n A vector of one or more non-zero positive integers

Value

An vector of Bell numbers

Functions

• B(): Compute the Bell numbers

4 genComp

Author(s)

James Curran

References

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Recurrence_relation

See Also

Stirling2

Examples

returns B(6)
Bell(6)

returns B(1), B(2), ..., B(6)
B(1:6)

genComp Generate all, or a subset, of the integer partitions of an integer n.

Description

This function will return either all, or a length restricted subset of the integer partitions of an integer
n. The method works by considering compositions rather than partions, hence the name.

Usage

genComp(n, len = TRUE, addZeros = FALSE)

Arguments

n A positive non-zero integer

len Either logical TRUE, or an integer less than or equal to n. If the latter form is
used then only those partions of length less than or equal to len are returned

addZeros If true then the empty partitions are added to the list of partitions.

Details

This function will return all partions, or a subset, of an integer n. It makes no check to see if this
is a sensible thing to do. It also does it in a lazy way in that in the restricted case it generates
all partitions and then only returns those that satistfy the length constraint. Users are advised to
check how many partitions are possible using partition number function which is implemented the
P function in the partions package. Having said this P(50) is approximately 200 thousand, and
P(100) around 190 million, so the function should work well for smallish n.

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Recurrence_relation

initMC 5

Value

A list with each list element representing an integer partition

Note

This function does not warn the user that the requested set of partitions may be very large. In
addition, all working is handled entirely in memory, and so this may cause it to crash if the request
is execeptionally large.

Author(s)

Jerome Kelleher (algorithm and Python version) and James M. Curran (C++ version/R interface)

References

Kelleher, J. (2005), Encoding Partitions As Ascending Compositions, PhD thesis, University Col-
lege Cork.

Kelleher, J. and O’Sullivan, B. (2009), Generating All Partitions: A Comparison Of Two Encodings,
https://arxiv.org/abs/0909.2331.

Kelleher, J. (2010) Generating Integer Partitions,https://jeromekelleher.net/tag/integer-partitions.
html.

Examples

a small numeric example with all 11 partitions of 6
genComp(6)

a small example with the integer partitions of 6 of length 3 with empty partitions added
genComp(6, 3, TRUE)

a larger example - 627 partions of 20, but restricted to those of length 3 or smaller
genComp(20, 3)

initMC Initialise the permutation object

Description

This function initialises the permutation object. It must be called before nextPerm can be called

Usage

initMC(x)

Arguments

x a vector of integers, reals, logicals or characters

https://arxiv.org/abs/0909.2331
https://jeromekelleher.net/tag/integer-partitions.html
https://jeromekelleher.net/tag/integer-partitions.html

6 multinom

Value

a object of class mc which is a list containing elements

mode - the mode of the original data in x, "integer", "double", or mode(x)

set - either the multiset being permuted if mode is "integer" or a set of integers
corresponding to the elements of the multiset

elements - if mode is not "integer" then this contains the elements being permuted other-
wise NULL

length - the length of the multiset

mc - a pointer to the internal C++ Multicool object. Users should not use this unless
they really know what they are doing

Author(s)

James M. Curran

See Also

nextPerm

Examples

x = c(1,1,2,2)
m1 = initMC(x)
m1

a non-integer example

x = rep(letters[1:4],c(2,1,2,2))
m2 = initMC(x)
m2

multinom Calculate multinomial coefficients

Description

This function calculates the number of permutations of a multiset, this being the multinomial coeffi-
cient. If a set X contains k unique elements x1, x2, . . . , xk with associate counts (or multiplicities)
of n1, n2, . . . , nk, then this function returns

n!

n1!n2! . . . nk!

where n =
∑

i=1 kni.

multinom 7

Usage

multinom(x, counts = FALSE, useDouble = FALSE)

Arguments

x Either a multiset (with one or more potentially non-unique elements), or if
counts is TRUE a set of counts of the unique elements of X . If counts is FALSE
and x is not numeric, then x will be coerced into an integer vector internally. If
counts is TRUE then x must be a vector of integers that are greater than, or equal
to zero.

counts if counts is TRUE, then this means x is the set of counts n1, n2, . . . , nk rather
than the set itself

useDouble if useDouble is TRUE then the computation will be done using double precision
floating point arithmetic. This option was added because the internal code can-
not handle integer overflow. The double precision code will may a result that is
closer to the truth for large values, but this is not guaranteed. Ideally something
like the GMP library should be used, but this is not a priority at this point in
time.

Details

multinom depends on C++ code written by Dave Barber which can be found at http://tamivox.
org/dave/multinomial/code.html. The code may require the STL algorithm library to be in-
cluded in order to compile it.

Value

A single integer representing the multinomial coefficient for the given multiset, or given set of
multiplicities.

Author(s)

James M. Curran, Dave Barber

References

http://tamivox.org/dave/multinomial/code.html

Examples

An example with a multiset X = (a,a,a,b,b,c)
There are 3 a s, 2 b s and 1 c, so the answer should be
(3+2+1)!/(3!2!1!) = 6!/3!2!1! = 60
x = rep(letters[1:3],3:1)
multinom(x)

in this example x is a vector of counts
the answer should be the same as above as x = c(3,2,1)
x = rep(letters[1:3],3:1)

http://tamivox.org/dave/multinomial/code.html
http://tamivox.org/dave/multinomial/code.html
http://tamivox.org/dave/multinomial/code.html

8 nextPerm

x = as.vector(table(x)) #coerce x into a vector of counts
multinom(x, counts = TRUE)

An example of integer overflow. x is a vector of counts
c(12,11,8,8,6,5). The true answer from Maple is
11,324,718,121,789,252,764,532,876,767,840,000
The error in the integer based answer is obvious.
The error using floating point is not, but from Maple is
0.705057123232160000e+10
Thanks to Lev Dashevskiy for calling my attention to this.
Not run: x = c(12,11,8,8,6,5)
multinom(x, counts = TRUE, useDouble = FALSE)
multinom(x, counts = TRUE, useDouble = TRUE)

End(Not run)

nextPerm Return the next permutation of the multiset

Description

This function returns the next permuation of the multiset if there is one. initMC called before
nextPerm can be called.

Usage

nextPerm(mcObj)

Arguments

mcObj an S3 object of class mc which must be created with initMC

Value

either a vector with the next permutation of the multiset or FALSE when all permutations have been
returned

Author(s)

James M. Curran

See Also

nextPerm

Stirling2 9

Examples

x = c(1,1,2,2)
m1 = initMC(x)

for(i in 1:6){
cat(paste(paste(nextPerm(m1),collapse=","),"\n"))

}

an example with letters
x = letters[1:4]
m2 = initMC(x)
nextPerm(m2)
nextPerm(m2)
and so on

Stirling2 Compute Stirling numbers of the second kind

Description

This function computes Stirling numbers of the second kind, S(n, k), which count the number of
ways of partitioning n distinct objects in to k non-empty sets.

Usage

Stirling2(n, k)

S2(n, k)

Arguments

n A vector of one or more positive integers

k A vector of one or more positive integers

Details

The implementation on this function is a simple recurrence relation which defines

S(n, k) = kS(n− 1, k),+S(n− 1, k − 1)

for k > 0 with the inital conditions S(0, 0) = 1 and S(n, 0) = S(0, n) = 0. If n and n have
different lengths then expand.grid is used to construct a vector of (n, k) pairs

Value

An vector of Stirling numbers of the second kind

10 Stirling2

Functions

• S2(): Compute Stirling numbers of the second kind

Author(s)

James Curran

References

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Recurrence_relation

Examples

returns S(6, 3)
Stirling2(6, 3)

returns S(6,1), S(6,2), ..., S(6,6)
S2(6, 1:6)

returns S(6,1), S(5, 2), S(4, 3)
S2(6:4, 1:3)

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Recurrence_relation

Index

∗ combinations
multinom, 6

∗ multinomial
multinom, 6

∗ partitions
Bell, 3
genComp, 4
Stirling2, 9

∗ permutations
allPerm, 2
multinom, 6

allPerm, 2

B (Bell), 3
Bell, 3

genComp, 4

initMC, 3, 5

multinom, 3, 6

nextPerm, 8

S2 (Stirling2), 9
Stirling2, 9

11

	allPerm
	Bell
	genComp
	initMC
	multinom
	nextPerm
	Stirling2
	Index

