1.1 Fitting a zeta distribution

Let us consider again the data from Roux et al. [1]. This data set is built into
the package and can be accessed from the Psurveys object. That is, we can

type:

> data("Psurveys")
> roux = Psurveys$roux

The package includes a special printing function that summarises the data for
reading rather than displaying it in the way it is stored. R prints the values of
objects (or variables) simply by typing their name. For example

> roux

Number of Groups

n rn
0 754
1 9
2 8
3 4
4 1

Roux C, Kirk R, Benson S, Van Haren T, Petterd C (2001).
"Glass particles in footwear of members of the public in
south-eastern Australia-a survey." _Forensic Science
International_, *116%(2), 149-156.
doi:10.1016/S0379-0738(00)00355-8
<https://doi.org/10.1016/50379-0738%2800%2900355-8>.

It is very simple to fit a zeta distribution to this data set. We do this using the
fitDist function.

> fit = fitDist(roux)

We have assigned the result of the fitting to an arbitrarily chosen variable name,
fit, chosen because it is easy to remember that it is a fitted object. The
package includes specialised functions for both printing and plotting the fitted
object. The print method displays an estimate of the shape parameter «, an
estimate of the standard deviation—the standard error—of the estimate of «
(sd(&) = se(&)). Note: it is important to understand that the value of the
shape parameter that is displayed, and the value that is stored in the fitted
object differ by 1. That is, « is shown, and s = a — 1 is stored. This difference
only has consequences if the fitted value is being used in conjunction with other
functions.



1.1.1 Using the fitted distribution to estimate P terms

The print method displays the first 10 fitted probabilities from the model by
default.

> fit

The estimated shape parameter is 4.9544

The standard error of shape parameter is 0.2366

NOTE: The shape parameter is reported so that it is consistent
with Coulson et al. However, the value returned is actually s'
= shape - 1 to be consistent with the VGAM parameterisation,
which is used for computation. This has flow on effects, for
example in confInt. This will be changed at some point.

The first 10 fitted values are:

PO P1 P2 P3 P4
9.631547e-01 3.106447e-02 4.167082e-03 1.001917e-03 3.316637e-04
P5 P6 pP7 P8 P9

1.344002e-04 6.262053e-05 3.231467e-05 1.802885e-05 1.069709e-05

This information is probably sufficient for most casework. However, the package
has a function, probfun, that returns a bespoke function that can calculate any
probability term. This function is applied a fitted object. For example

> P = probfun(fit)

P is just a variable name and we could have used anything. We have chosen P
because this probability function returns P terms. To use it, we only need to
provide the value of k, and the function will return Py. For example

> P(5)

P5
0.0001344002

1.2 Fitting a zero-inflated zeta distribution

We can also easily fit a zero-inflated zeta model using the fitZIDist function'.
As before, we can choose a variable name to store the results in.

1Functions with mixed case names are often annoying. For that reason, the package also
allows fitZIdist and fitzidist.



> fit.zi = fitZIDist (roux)
> fit.zi

The estimated mixing parameter, pi, is 0.8465

The estimated shape parameter is 2.8846

NOTE: The shape parameter is reported so that it is consistent
with Coulson et al. However, the value returned is actually s'
= shape - 1 to be consistent with the VGAM parameterisation,
which is used for computation. This has flow on effects, for
example in confInt. This will be changed at some point.

The first 10 fitted values are:

PO P1 P2 P3 P4
0.9716490911 0.0169404164 0.0052597614 0.0022938450 0.0012050764
P5 P6 pP7 P8 P9

0.0007122067 0.0004565511 0.0003106019 0.0002211302 0.0001631754

In the example above we fit a zero-inflated model to Roux et al.’s data, and
print out the resulting fit. We get, as with the zeta model, estimates of the
parameters and a default set of fitted values. The output is interesting in that
we can see (from the value of ) that the zero part of the zero-inflated model
is picking up about 85% of the zeros. It is interesting to compare the estimates
from the raw frequencies, the zeta model, and those of the ZIZ model. The
estimates are shown in Table 1.

L P]gaw P]j,eta PkZI

0.9716 0.9632 0.9716
0.0116 0.0311 0.0169
0.0103 0.0042 0.0053
0.0052 0.0010 0.0023
0.0013 0.0003 0.0012
0.0000 0.0001 0.0007

Uk W N = O

Table 1: Estimated probability that k groups of glass would be found in shoes of
a random member of the population based on the data of [1], the raw frequencies,
and those produced from the zeta and ZIZ models respectively.

We can see from Table 1 that we now have a non-zero estimate for P5, but this
comes at the cost of smaller probabilities for the preceding terms Py—P; which
is not necessarily a negative. The survey data is dominated by zeros. However,
we think it likely that the raw sample estimates (for Py—P,) are overestimates.
The model reduces the estimated value, which is in line with our thinking.
Interestingly, the effect of including the zero-inflation factor is to increase nearly
all of the probabilities, with the exception of P;. A natural question to ask is



“Which model is correct?” The answer, unhelpfully, is “Neither.” because these
are simply models. They can still help us without us having to believe that they
are true.

1.3 Confidence intervals for the parameter estimates

The £itPS package provides a confint method for the fitted value. The method
returns both a Wald confidence interval and profile likelihood interval. The two
intervals are returned as elements of a 1ist named wald and prof respectively.

> ci = confint(fit)
> ci$wald

2.5% 97.5%
3.490761 4.418099

> ci$prof

2.5% 97.5%
3.520495 4.451277

It must be noticed that neither of these intervals contain the estimated value
shown in the previous output. However, it is so simply because they are con-
fidence intervals on s’ and not s ands can be remedied by adding one to each
interval:

> ci$wald + 1

2.5% 97.5%
4.490761 5.418099

> ci$prof + 1

2.5% 97.5%
4.520495 5.451277

The reason for not correcting these intervals is that the method mostly exists
to feed into other parts of the package, especially the plot method.

1.3.1 Bootstrapped and profile likelihood confidence regions for the
zero-inflated zeta

The package includes the facility to compute both bootstrapped and profile like-
lihood confidence regions for the parameters of the zero-inflated zeta distribtion.
It does, also, in fact compute bootstrapped confidence intervals for the zeta dis-
tribution. The confint function returns a confidence region if the fitted object
contains information from a zero-inflated zeta fit. As an example, we will first



compute profile likelihood confidence regions for the Roux et al. [1] data. To do
this we use the fitted object we previously created, fit.zi, and, although not
required, we supply a set of two levels so that we can compute both an 80% and
a 95% confidence region. confit returns a list of confidence regions—one for
each level—each of which are simply a set of x and y coordinates corresponding
to the appropriate contour line. We can use this information for plotting. The
code to produce Figure 1 is given below.

cr = confint(fit.zi, level = c(0.80, 0.95))

plot(cr[["0.95"]1], type = "1")

polygon(cr[["0.8"]], border = "red")

legend ("topright", 1ty = 1, lwd = 2, col = c("red", "black"),
legend = c("80%", "95%"), bty = "n")
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A bootstrapped confidence region can be computed using the bootCI function.
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Figure 1: 80% and 95% confidence regions for the parameters of a zero-inflated
zeta distribution fitted to the Roux et al. [1] data.

The bootCI function includes the facility to plot the resulting confidence re-
gion(s) as and hide or display the function’s progress. The latter is important
because this procedure is numerically intensive, and even with utilising parallel
processing, can be quite slow. The code below produces Figure 2

> bcr = bootCI(roux,

+ model = "ziz",
+ plot = TRUE,
+

silent = TRUE)
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Figure 2: A 95% bootstrapped confidence region for the parameters of a zero-
inflated zeta distribution fitted to the Roux et al. [1] data.

1.4 Comparing two surveys

We can use the methodology that has been demonstrated so far to compare
surveys. One reason for comparing surveys is to explore the hypothesis that
there is no difference in the underlying “true?” value of a.. If there is insufficient
evidence to reject this hypothesis, then one may be justified in combining data
from two surveys. In the first instance we will take an ad-hoc approach, and
then treat this problem more formally. In our ad-hoc approach we will compare
confidence intervals for two surveys. If these confidence intervals overlap, then
we might conclude that there is insufficient evidence in the data to suggest that
the estimates of « are different. We will illustrate this example with the surveys
conducted by Lewis et al. [2] and Jackson et al. [3]. Lewis et al. [2] observed two
sets of clothing with one fragment on each. Similarly, Jackson et al. [3] found a
single fragment of glass on each of six people. The data from each of these two
surveys is summarised in Table 2.

lr’”/
n ‘ Lewis et al. ‘ Jackson et al.
0 408 224
1 2 6

Table 2: Survey results from Lewis et al. [2] and Jackson et al. [3].

2Readers may be aware that one of the authors is fundementally Bayesian at heart, and
the so the concept of the true value of a population parameter is antithetical to the school
of thought. We, however, proceed on the basis that the Frequenist school of thought is not
incorrect, but just differs in interpretation.



Visual inspection of these surveys would suggest that they are fairly similar.
We can fit a zeta distribution to each survey, and then compute a confidence in-
terval for each survey. Again, these data sets are included in the fitPS package.

lewis = Psurveys$lewis.clothing
jackson = Psurveys$jackson
fit.lewis = fitDist(lewis)
fit.jackson = fitDist(jackson)
confint(fit.lewis)$wald

V V V VvV V

2.5% 97.5%
4.825493 8.739840

> confint(fit.jackson)$wald

2.5% 97.5%
3.443639 5.623473

From the output it can be seen that there is overlap between these two (Wald)
confidence intervals suggesting that the observed difference between the two
surveys may not be statistically significant. The results using profile likelihood
intervals lead to the same conclusion but are not shown. We can test this more
formally. Specifically, we wish to test the (null) hypothesis that

Hy : a1 = ag or equivalently Hy : oy — ag =0,

where a7 is the true value of « for the the Lewis et al. data, and «y is the true
value of « for the the Jackson et al. data. We choose a two-tailed alternative,
meaning we are not concerned about the sign of any difference but simply the
magnitude of the difference. That is,

Hy : a1 # as or equivalently Hy : ay — ag # 0.

We test this hypothesis by constructing a test statistic and then computing a P-
value under the assumption that the null hypothesis is true. We are interested
in the difference between the two population values of o which is estimated by
computing the difference in the sample estimates. That is, our estimate of a; —
o, is given by &1 — &g, where &7 and &s are the maximum likelihood estimates
based on the survey data. This difference is scaled by the estimated standard
deviation in the difference, that is, by the standard error of the difference,
se(&y — ég) and is estimated—to keep the statistical theory to a minimum—as
the sum of the square root of the two estimated variances, i.e.

se(Gy — Gg) = \/V(ay) + V(az).

Our test statistic is then R R
a1 — Q2
Zo= —F7.

se(dy — Gs)



It can be shown that this test statistic follows an approximate normal distri-
bution under the null hypothesis which means our P-value be computed by
evaluating

P =Pr(Z > |Z))
=2(1—Pr(Z < |Zo])).

All this theory has been integrated into a function called compareSurveys

> compareSurveys(lewis, jackson)

Two-sided Wald test

data: lewis and jackson
z = 1.9678, p-value = 0.04909
alternative hypothesis: true difference in shape parameters is not equal to O
sample estimates:
Shape of lewis Shape of jackson
6.782666 4.533556

The P-value is 0.049 (3 d.p.) which slightly smaller than 0.05 but significantly
larger than 0.01. Based on this we would conclude that there is insufficient
evidence (at the 0.01 level) to reject the null hypothesis of a common value of
«, and therefore it may be sensible to combine data from these two surveys.
The theory of likelihood ratio tests [4] could have also been used to test this
hypothesis, but that was beyond the scope of this article. However, the £itPS
package contains a function called compareSurveysLRT which can compare two
or more surveys simultaneously using a likelihood ratio test.
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